Search results

Search for "nanoparticle toxicity" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • permeabilization [10], in turn improving the bactericidal activity of the drug, too. For biological applications, it is essential for IONPs to be stabilized with the help of stabilizing agents [11][12]. This helps to reduce the nanoparticle toxicity and facilitates the synthesis of stable nanoparticle dispersions
  • extracellular drug concentration), the limitation imposed by the nanoparticle toxicity is overcome by the NOR@IONPpH5 system. Thus, the use of pH 5 for drug loading onto IONPs provides the desirable additional benefit of the reduced toxicity towards macrophage cells. Conclusion The general inability to increase
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • the published studies are devoted to the use of expensive plasmonic gold nanoparticles, whose accumulation in the body is still controversial and may lead to several adverse effects. In this direction, nanoparticle toxicity must also be studied carefully. For example, a few studies demonstrated the
PDF
Album
Review
Published 31 Jul 2020

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
PDF
Album
Review
Published 03 Apr 2018

Modeling adsorption of brominated, chlorinated and mixed bromo/chloro-dibenzo-p-dioxins on C60 fullerene using Nano-QSPR

  • Piotr Urbaszek,
  • Agnieszka Gajewicz,
  • Celina Sikorska,
  • Maciej Haranczyk and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 752–761, doi:10.3762/bjnano.8.78

Graphical Abstract
  • of pollutants and the C60 nanoparticle. Toxicity results In this study, we consider toxicity to be well-described for dioxins and dioxin-like compounds as an aryl hydrocarbon receptor (AhR) interaction mechanism. AhR is a cytosolic transcription factor. Normally, the inactive protein is bound to
  • possible. We can also assume that, according to one of the proposed mechanisms for nanoparticle toxicity, carbon structures such as fullerenes – because of their sorption abilities – will have the potential to act as vectors. This would allow more pollutants to enter to the cells of the organism. At this
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2017

Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish

  • Zitao Zhou,
  • Jino Son,
  • Bryan Harper,
  • Zheng Zhou and
  • Stacey Harper

Beilstein J. Nanotechnol. 2015, 6, 1568–1579, doi:10.3762/bjnano.6.160

Graphical Abstract
  • radius of each component atom in the molecule. Van der Waal surface area values for bare ZnO were 50.3 Å2 and ranged from 173 to 560.40 Å2 for other surface chemistries. These values had the highest variance in our estimations. ZnO nanoparticle toxicity Embryonic zebrafish mortality was concentration
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • to be equally toxic than alloy particles containing 80% of silver and pure AgNP pointing out that at least their toxic potential is similar. More recent and so far unpublished data seems to further confirm the hypothesis, that silver nanoparticle toxicity is mainly derived from the silver ions. In a
  • determine though, as silver nanoparticle toxicity also depends on particle size as well as particle composition. The latter could distinctly been shown by employing gold–silver alloy colloids as model nanoparticles. The active components seem to be the Ag+ ions released from the particles, rather than the
  • can be expected to be toxic under consideration of particle characteristics obtained under relevant biological conditions. Additionally, nanoparticle toxicity should not only be asssessed considering cell viability but also concerning functional aspects. To this purpose the investigation of
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015

Effect of silver nanoparticles on human mesenchymal stem cell differentiation

  • Christina Sengstock,
  • Jörg Diendorf,
  • Matthias Epple,
  • Thomas A. Schildhauer and
  • Manfred Köller

Beilstein J. Nanotechnol. 2014, 5, 2058–2069, doi:10.3762/bjnano.5.214

Graphical Abstract
  • dihydrate (Fluka, p.a.), silver nitrate (Fluka, p.a.), and D-(+)-glucose (Baker) were used. Ultrapure water was prepared with an ELGA Purelab ultra instrument. Ag-NP were stored under argon to prevent partial oxidative dissolution (which drastically influences nanoparticle toxicity) prior to cell culture
PDF
Album
Full Research Paper
Published 10 Nov 2014

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • stemming from implant wear [6][7][8], it is a severe problem when a systematic study of nanoparticle toxicity needs to be carried out. Hence, the size of the nanoparticles needs to be precisely controlled over a wide range, while all artificial organic additives, potentially interfering with toxicity
PDF
Album
Video
Review
Published 12 Sep 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • : hepatocytes; inflammation; Kupffer cells; liver sinusoidal endothelial cells; nanoparticle toxicity; nanoparticle uptake; quantum dots; superparamagnetic iron-oxide nanocrystals; Introduction The superior optical properties of QDs compared to organic dyes render them promising candidates for the demands of
PDF
Album
Full Research Paper
Published 02 Sep 2014

Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development

  • Ulrike Taylor,
  • Wiebke Garrels,
  • Annette Barchanski,
  • Svea Peterson,
  • Laszlo Sajti,
  • Andrea Lucas-Hahn,
  • Lisa Gamrad,
  • Ulrich Baulain,
  • Sabine Klein,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2014, 5, 677–688, doi:10.3762/bjnano.5.80

Graphical Abstract
  • abolish silver nanoparticle toxicity, but may raise the toxic threshold. In which way the presence of a protein corona influences embryotoxicity has not yet been explored. For example, it has been shown that such a corona has a considerable impact on the zeta potential of the particles [73]. The zeta
  • surfactants or ligands. Surfactants might have a great impact on nanoparticle toxicity. For instance, only changing the strength of ligand affinity to the nanoparticle, without changing its size or charge, significantly affects the toxicity even for gold nanoparticles. This difference in soft and hard ligand
PDF
Album
Full Research Paper
Published 21 May 2014
Other Beilstein-Institut Open Science Activities